The Imaginary Institute
www.imaginary-institute.com
2Dcourse@imaginary-institute.com

2D ANIMATION & INTERACTION COURSE

WEEK 4 QUICK REFERENCE

SHAPES Each shape is created by calling its own particular function. As always, the difference between
upper and lower case is important.

Points
point(xl, yl);
Draw a single point at (x,y). The color of the point is the current color
used for strokes.

(x,y)
O

Triangles
triangle(x1l, yl, x2, y2, x3, y3);
Draw a triangle joining the three points at (x1,y1), (x2,y2), and
(x3,v3).
(x1,yl1)

(x2,y2)
(x3,y3)

©The Imaginary Institute, 2013. All rights reserved.

Quads
quad(xl, yl, x2, y2, x3, y3, x4, v4);
Draw a 4-sided joining the three points at (x1,y1l), (x2,y2),
(x3,y3),and (x4,y4).

(x1,y1)

(x2,y2)
(x3,y3)

(x4 ,y4)

Arcs
arc(cx, cy, wid, hgt, aStart, aEnd);
Draw an arc, or a section of a circle (or ellipse). The first four values define
the ellipse. The last two give the starting and ending angles in radians,
measured clockwise from 3 o’clock.

A

(cx,cy)

aStart

aEnd

A
\J

wid

Page 2 2D Animation & Interaction Course
Week 4 Quick Reference

Polygons
beginShape();
vertex(xl, yl);
vertex(x2, y2);

endShape();

Draw a multi-point polygon joining all the points given in the calls to
vertex (), in order. To draw a line automatically from the last point to
the first, give the keyword CLOSE as an argument to endShape (). |
suggest getting in the habit of indenting all the lines between
beginShape () and endShape () by one additional tab stop.

(x1,y1)

(x2,y2)

(x7,y7)

(x3,y3)

(x4,y4)

ANGLES Angles are described as a value from 0 to 2r, where 1 has a value of about
3.14159. This value is saved in the keyword PI, and its related keywords
HALF PI and TWO_PI. An angle of O radians is at 3 o’clock, and values
increase clockwise. If you have an angle in degrees, you can turn it into
radians by handing it to the function radians (). To convert an angle in
radians into degrees, hand it to degrees ().

3T/2

TT/2

Page 3 2D Animation & Interaction Course
Week 4 Quick Reference

Page 4

LOOPS

There are two different styles for writing a loop. They are entirely equal in terms of what they

can do, but often one form more closely matches the sequence of operations you’re imagining
as you write the code.

While Loops

A basic loop uses the keyword while, followed by a test in a pair of
parentheses. As long as the value in the parentheses is true, the statement
that follows will be executed over and over. To execute multiple
statements, wrap them in curly braces. This example will draw a line of
increasingly larger circles across the screen.

int circleX = 0;

while (circleX < 100) {
circleX += 5;
radius += 1;

ellipse(circleX, 200, 2*radius, 2*radius);

For Loops

The above example has three key pieces: an initialization step, a test, and
an update step. You can roll these all together into one line by using the

for loop. The following loop produces the very same results as the while
loop above:

for (int circleX=0; circleX <100; circle +=5) {
radius += 1;

ellipse(circleX, 200, 2*radius, 2*radius)

The for loop allows you to declare a variable in the initialization step, as
shown here.

2D Animation & Interaction Course
Week 4 Quick Reference

Skipping and Stopping
Sometimes it’s useful to jump right back to the testing step of a loop, or to
get out altogether. To jump immediately back to the test, and skip any
remaining statements in the curly braces that make up the body of the
loop, simply call continue. This statement does not have parentheses
after it. To exit the loop immediately and jump immediately to the first line
after the closing curly brace, call break. This also does not have
parentheses after it.

for (int x=0; x<100; x+=2) {

if (x == 50) break; // skip only when x is 50
ellipse(x, 100, 100, 100);
}
VARIATIONS There are two variants on the if statement that are often convenient. Anything you can do
ON IF with these, you can do with a normal if statement as well.
Switch

Choose from a number of alternative case statements. At the end you may
have a default clause which gets executed if none of the others match.
The values in the case statements must be constants (that is, they cannot
be variables whose values can change). Each clause except the last usually
ends with a break statement.

switch (numberOfPlayers) {
case 0:
println(“You must have at least one player!”);
break;
case 1:

println(“Welcome to the solo game.”);

break;
default:
println(“Two or more players? Let’s go!”);
}
Page 5 2D Animation & Interaction Course

Week 4 Quick Reference

Conditional

The conditional offers a super-concise test for those times when everything
is very short and you want to squeeze an if test and both clauses on one
line. The test appears before the mark, followed by the true clause, a
colon, and the false clause.

// Get 50 points if distance to target is
// within 10 units, otherwise no points.
score = distance < 10 ? 50 : 0;

UTILTIES Three built-in utilities for changing numbers are useful in many situations. You’ll use these a lot
when you work with the mouse.

map
Convert a number from a value within one range to a corresponding value
within another range.

r = map(v, aL, aR, bL, bR);

aL v

N N

\J/Z/
O/
r

Find a number that blends from one value to another. The float that

aR
N
N

£ /AR
_/ N
bL bR
lerp

controls the blend, here a, should be between 0 and 1 to get back values
between the extremes. Note that unlike map (), the controlling value a
appears at the end of the argument list.

r = lerp(lovalue, hivalue, a);

o
Il
o
o
I
=

@
D
@

Page 6 2D Animation & Interaction Course
Week 4 Quick Reference

dist
Find the distance in pixels between points (x1, y1l) and (x2, y2).

d = dist(x1l, yl, x2, y2);

(x2,y2)

dist(x1l,yl,x2,y2)

(x1,y1)

THE MOUSE The current location of the mouse in the graphics window is always given
by the system variables mouseX and mouseY.

You can write a variety of routines that will be called automatically by the
system. They should all be declared of type void, and none take
arguments. Most of the time you’ll keep these routines very short and
very fast. Typically the goal is to change one or more global variables so
that the next time draw () is called, the picture that’s created is somehow
responsive to the mouse.

Here are the most commonly useful mouse routines, along with the
condition that causes them to be called:

mousePressed() any mouse button was pressed
mouseReleased () any mouse button was released
mouseDragged() mouse moved while a button was down

mouseMoved () mouse moves while no buttons were down

You can also test the value of a system-wide global variable to determine
which mouse button is currently down:

mouseButton has value LEFT, RIGHT, or CENTER

Page 7 2D Animation & Interaction Course
Week 4 Quick Reference

